Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 730
Filtrar
1.
Int Immunopharmacol ; 130: 111786, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38447415

RESUMO

G-protein coupled receptors (GPCRs) constitute the largest class of cell surface receptors and present prominent drug targets. GPR139 is an orphan GPCR detected in the septum of the brain. However, its roles in cognition are still unclear. Here we first established a mouse model of cognitive impairment by a single intracerebroventricular injection of aggregated amyloid-beta peptide 1-42 (Aß1-42). RNA-sequencing data analysis showed that Aß1-42 induced a significant decrease of GPR139 mRNA in the basal forebrain. Using GPR139 agonist JNJ-63533054 and behavioral tests, we found that GPR139 activation in the brain ameliorated Aß1-42-induced cognitive impairment. Using western blot, TUNEL apoptosis and Golgi staining assays, we showed that GPR139 activation alleviated Aß1-42-induced apoptosis and synaptotoxicity in the basal forebrain rather than prefrontal cortex and hippocampus. The further study identified that GPR139 was widely expressed in cholinergic neurons of the medial septum (MS). Using the overexpression virus and transgenic animal model, we showed that up-regulation of GPR139 in MS cholinergic neurons ameliorated cognitive impairment, apoptosis and synaptotoxicity in APP/PS1 transgenic mice. These findings reveal that GPR139 of MS cholinergic neurons could be a critical node in cognition and potentially provides insight into the pathogenesis of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Proteínas do Tecido Nervoso , Receptores Acoplados a Proteínas G , Septo do Cérebro , Animais , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos Transgênicos , Regulação para Cima , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Septo do Cérebro/metabolismo , Camundongos Endogâmicos C57BL
3.
J Comp Neurol ; 530(15): 2611-2644, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35708120

RESUMO

The current study provides a detailed architectural analysis of the subpallial telencephalon of the tree pangolin. In the tree pangolin, the subpallial telencephalon was divided into septal and striatopallidal regions. The septal region contained the septal nuclear complex, diagonal band of Broca, and the bed nuclei of the stria terminalis. The striatopallidal region comprised of the dorsal (caudate, putamen, internal and external globus pallidus) and ventral (nucleus accumbens, olfactory tubercle, ventral pallidum, nucleus basalis, basal part of the substantia innominata, lateral stripe of the striatum, navicular nucleus, and the major island of Calleja) striatopallidal complexes. In the tree pangolin, the organization and numbers of nuclei forming these regions and complexes, their topographical relationships to each other, and the cyto-, myelo-, and chemoarchitecture, were found to be very similar to that observed in commonly studied mammals. Minor variations, such as less nuclear parcellation in the bed nuclei of the stria terminalis, may represent species-specific variations, or may be the result of the limited range of stains used. Given the overall similarity across mammalian species, it appears that the subpallial telencephalon of the mammalian brain is highly conserved in terms of evolutionary changes detectable with the methods used. It is also likely that the functions associated with these nuclei in other mammals can be translated directly to the tree pangolin, albeit with the understanding that the stimuli that produce activity within these regions may be specific to the life history requirements of the tree pangolin.


Assuntos
Pangolins , Telencéfalo , Animais , Encéfalo , Pangolins/anatomia & histologia , Septo do Cérebro , Telencéfalo/anatomia & histologia
4.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682713

RESUMO

We studied the effects of stimulation of the medial septal area on the gene expression in the dorsal and ventral hippocampus. Rats under urethane anesthesia were implanted with a recording electrode in the right hippocampus and stimulating electrode in the dorsal medial septum (dMS) or medial septal nucleus (MSN). After one-hour-long deep brain stimulation, we collected ipsi- and contralateral dorsal and ventral hippocampi. Quantitative PCR showed that deep brain stimulation did not cause any changes in the intact contralateral dorsal and ventral hippocampi. A comparison of ipsi- and contralateral hippocampi in the control unstimulated animals showed that electrode implantation in the ipsilateral dorsal hippocampus led to a dramatic increase in the expression of immediate early genes (c-fos, arc, egr1, npas4), neurotrophins (ngf, bdnf) and inflammatory cytokines (il1b and tnf, but not il6) not only in the area close to implantation site but also in the ventral hippocampus. Moreover, the stimulation of MSN but not dMS further increased the expression of c-fos, egr1, npas4, bdnf, and tnf in the ipsilateral ventral but not dorsal hippocampus. Our data suggest that the activation of medial septal nucleus can change the gene expression in ventral hippocampal cells after their priming by other stimuli.


Assuntos
Anestesia , Estimulação Encefálica Profunda , Núcleos Septais , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Expressão Gênica , Hipocampo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Septo do Cérebro/metabolismo , Uretana
5.
Front Neural Circuits ; 16: 916499, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712645

RESUMO

The basal forebrain is one of the three major brain circuits involved in episodic memory formation together with the hippocampus and the diencephalon. The dysfunction of each of these regions is known to cause anterograde amnesia. While the hippocampal pyramidal neurons are known to encode episodic information and the diencephalic structures are known to provide idiothetic information, the contribution of the basal forebrain to memory formation has been exclusively associated with septo-hippocampal cholinergic signaling. Research data from the last decade broadened our understanding about the role of septal region in memory formation. Animal studies revealed that septal neurons process locomotor, rewarding and attentional stimuli. The integration of these signals results in a systems model for the mnemonic function of the medial septum that could guide new therapeutic strategies for basal forebrain impairment (BFI). BFI includes the disorders characterized with basal forebrain amnesia and neurodegenerative disorders that affect the basal forebrain. Here, we demonstrate how the updated model of septal mnemonic function can lead to innovative translational treatment approaches that include pharmacological, instrumental and behavioral techniques.


Assuntos
Prosencéfalo Basal , Amnésia , Animais , Hipocampo , Memória/fisiologia , Septo do Cérebro
6.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269661

RESUMO

(1) Background: The objective of this study was to uncover genomic causes of parental care. Since birds do not lactate and, therefore, do not show the gene expressional changes required for lactation, we investigate gene expression associated with parenting in caring and non-caring females in an avian species, the small passerine bird zebra finch (Taeniopygia guttata). Here, we compare expression patterns in the hypothalamic-septal region since, previously, we showed that this area is activated in parenting females. (2) Methods: Transcriptome sequencing was first applied in a dissected part of the zebra finch brain related to taking care of the nestlings as compared to a control group of social pairs without nestlings. (3) Results: We found genes differentially expressed between caring and non-caring females. When introducing a log2fold change threshold of 1.5, 13 annotated genes were significantly upregulated in breeding pairs, while 39 annotated genes were downregulated. Significant enrichments of dopamine and acetylcholine biosynthetic processes were identified among upregulated pathways, while pro-opiomelanocortin and thyroid hormone pathways were downregulated, suggesting the importance of these systems in parental care. Network analysis further suggested neuro-immunological changes in mothers. (4) Conclusions: The results confirm the roles of several hypothesized major pathways in parental care, whereas novel pathways are also proposed.


Assuntos
Tentilhões , Animais , Encéfalo , Feminino , Tentilhões/genética , Genoma , Septo do Cérebro , Transcriptoma
7.
J Neurosci ; 42(10): 1987-1998, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35064000

RESUMO

Hippocampal theta oscillations (HTOs) during rapid eye movement (REM) sleep play an important role in mnemonic processes by coordinating hippocampal and cortical activities. However, it is not fully understood how HTOs are modulated by subcortical regions, including the median raphe nucleus (MnR). The MnR is thought to suppress HTO through its serotonergic outputs. Here, our study on male mice revealed a more complex framework indicating roles of nonserotonergic MnR outputs in regulating HTO. We found that nonselective optogenetic activation of MnR neurons at theta frequency increased HTO amplitude. Granger causality analysis indicated that MnR theta oscillations during REM sleep influence HTO. By using three transgenic mouse lines, we found that MnR serotonergic neurons exhibited little or no theta-correlated activity during HTO. Instead, most MnR GABAergic neurons and Vglut3 neurons respectively increased and decreased activities during HTO and exhibited hippocampal theta phase-locked activities. Although MnR GABAergic neurons do not directly project to the hippocampus, they could modulate HTO through local Vglut3 and serotonergic neurons as we found that MnR GABAergic neurons monosynaptically targeted Vglut3 and serotonergic neurons. Additionally, pontine wave recorded from the MnR during REM sleep accompanied nonserotonergic activity increase and HTO acceleration. These results suggest that MnR nonserotonergic neurons modulate hippocampal theta activity during REM sleep, which regulates memory processes.SIGNIFICANCE STATEMENT The MnR is the major source of serotonergic inputs to multiple brain regions including the hippocampus and medial septal area. It has long been thought that those serotonergic outputs suppress HTOs. However, our results revealed that MnR serotoninergic neurons displayed little firing changes during HTO. Instead, MnR Vglut3 neurons were largely silent during HTO associated with REM sleep. Additionally, many MnR GABAergic neurons fired rhythmically phase-locked to HTO. These results indicate an important role of MnR nonserotonergic neurons in modulating HTO.


Assuntos
Hipocampo , Núcleos da Rafe , Animais , Neurônios GABAérgicos/fisiologia , Hipocampo/fisiologia , Masculino , Camundongos , Septo do Cérebro , Neurônios Serotoninérgicos , Ritmo Teta/fisiologia
8.
Elife ; 102021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851821

RESUMO

The septum is a ventral forebrain structure known to regulate innate behaviors. During embryonic development, septal neurons are produced in multiple proliferative areas from neural progenitors following transcriptional programs that are still largely unknown. Here, we use a combination of single-cell RNA sequencing, histology, and genetic models to address how septal neuron diversity is established during neurogenesis. We find that the transcriptional profiles of septal progenitors change along neurogenesis, coinciding with the generation of distinct neuron types. We characterize the septal eminence, an anatomically distinct and transient proliferative zone composed of progenitors with distinctive molecular profiles, proliferative capacity, and fate potential compared to the rostral septal progenitor zone. We show that Nkx2.1-expressing septal eminence progenitors give rise to neurons belonging to at least three morphological classes, born in temporal cohorts that are distributed across different septal nuclei in a sequential fountain-like pattern. Our study provides insight into the molecular programs that control the sequential production of different neuronal types in the septum, a structure with important roles in regulating mood and motivation.


Assuntos
Neurogênese/genética , Neurônios/fisiologia , Septo do Cérebro/fisiologia , Fator Nuclear 1 de Tireoide/genética , Transcrição Gênica , Animais , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Fator Nuclear 1 de Tireoide/metabolismo
9.
Nat Commun ; 12(1): 6796, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815379

RESUMO

Septal-hypothalamic neuronal activity centrally mediates aggressive behavior and dopamine system hyperactivity is associated with elevated aggression. However, the causal role of dopamine in aggression and its target circuit mechanisms are largely unknown. To address this knowledge gap, we studied the modulatory role of the population- and projection-specific dopamine function in a murine model of aggressive behavior. We find that terminal activity of ventral tegmental area (VTA) dopaminergic neurons selectively projecting to the lateral septum (LS) is sufficient for promoting aggression and necessary for establishing baseline aggression. Within the LS, dopamine acts on D2-receptors to inhibit GABAergic neurons, and septal D2-signaling is necessary for VTA dopaminergic activity to promote aggression. Collectively, our data reveal a powerful modulatory influence of dopaminergic synaptic input on LS function and aggression, effectively linking the clinically pertinent hyper-dopaminergic model of aggression with the classic septal-hypothalamic aggression axis.


Assuntos
Agressão/fisiologia , Comportamento Animal , Dopamina/metabolismo , Septo do Cérebro/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios GABAérgicos/metabolismo , Masculino , Camundongos , Modelos Animais , Vias Neurais/fisiologia , Receptores de Dopamina D2/metabolismo , Técnicas Estereotáxicas
10.
Int J Mol Sci ; 22(18)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34576305

RESUMO

Neuropeptide Y (NPY) has anxiolytic-like effects and facilitates the extinction of cued and contextual fear in rodents. We previously showed that intracerebroventricular administration of NPY reduces the expression of social fear in a mouse model of social fear conditioning (SFC) and localized these effects to the dorsolateral septum (DLS) and central amygdala (CeA). In the present study, we aimed to identify the receptor subtypes that mediate these local effects of NPY. We show that NPY (0.1 nmol/0.2 µL/side) reduced the expression of SFC-induced social fear in a brain region- and receptor-specific manner in male mice. In the DLS, NPY reduced the expression of social fear by acting on Y2 receptors but not on Y1 receptors. As such, prior administration of the Y2 receptor antagonist BIIE0246 (0.2 nmol/0.2 µL/side) but not the Y1 receptor antagonist BIBO3304 trifluoroacetate (0.2 nmol/0.2 µL/side) blocked the effects of NPY in the DLS. In the CeA, however, BIBO3304 trifluoroacetate but not BIIE0246 blocked the effects of NPY, suggesting that NPY reduced the expression of social fear by acting on Y1 receptors but not Y2 receptors within the CeA. This study suggests that at least two distinct receptor subtypes are differentially recruited in the DLS and CeA to mediate the effects of NPY on the expression of social fear.


Assuntos
Tonsila do Cerebelo/metabolismo , Neuropeptídeo Y/metabolismo , Fobia Social/metabolismo , Septo do Cérebro/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Arginina/análogos & derivados , Arginina/farmacologia , Benzazepinas/farmacologia , Medo , Masculino , Camundongos , Fobia Social/fisiopatologia , Receptores de Neuropeptídeo Y/metabolismo , Septo do Cérebro/efeitos dos fármacos
11.
Neuroimage ; 243: 118474, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34407439

RESUMO

Humans are intrinsically motivated to bond with others. The ability to experience affiliative emotions (such as affection/tenderness, sexual attraction, and admiration/awe) may incentivize and promote these affiliative bonds. Here, we interrogate the role of the critical reward circuitry, especially the Nucleus Accumbens (NAcc) and the septo-hypothalamic region, in the anticipation of and response to affiliative rewards using a novel incentive delay task. During Functional Magnetic Resonance Imaging (FMRI), participants (n = 23 healthy humans; 14 female) anticipated and watched videos involving affiliative (tenderness, erotic desire, and awe) and nonaffiliative (i.e., food) rewards, as well as neutral scenes. On the one hand, anticipation of both affiliative and nonaffiliative rewards increased activity in the NAcc, anterior insula, and supplementary motor cortex, but activity in the amygdala and the ventromedial prefrontal cortex (vmPFC) increased in response to reward outcomes. On the other hand, affiliative rewards more specifically increased activity in the septo-hypothalamic area. Moreover, NAcc activity during anticipation correlated with positive arousal for all rewards, whereas septo-hypothalamic activity during the outcome correlated with positive arousal and motivation for subsequent re-exposure only for affiliative rewards. Together, these findings implicate a general appetitive response in the NAcc to different types of rewards but suggests a more specific response in the septo-hypothalamic region in response to affiliative rewards outcomes. This work also presents a new task for distinguishing between neural responses to affiliative and non-affiliative rewards.


Assuntos
Antecipação Psicológica/fisiologia , Corpo Estriado/diagnóstico por imagem , Recompensa , Septo do Cérebro/diagnóstico por imagem , Adulto , Nível de Alerta/fisiologia , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Motivação , Núcleo Accumbens/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Adulto Jovem
12.
PLoS Biol ; 19(8): e3001383, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34460812

RESUMO

The hippocampal spatial code's relevance for downstream neuronal populations-particularly its major subcortical output the lateral septum (LS)-is still poorly understood. Here, using calcium imaging combined with unbiased analytical methods, we functionally characterized and compared the spatial tuning of LS GABAergic cells to those of dorsal CA3 and CA1 cells. We identified a significant number of LS cells that are modulated by place, speed, acceleration, and direction, as well as conjunctions of these properties, directly comparable to hippocampal CA1 and CA3 spatially modulated cells. Interestingly, Bayesian decoding of position based on LS spatial cells reflected the animal's location as accurately as decoding using the activity of hippocampal pyramidal cells. A portion of LS cells showed stable spatial codes over the course of multiple days, potentially reflecting long-term episodic memory. The distributions of cells exhibiting these properties formed gradients along the anterior-posterior and dorsal-ventral axes of the LS, directly reflecting the topographical organization of hippocampal inputs to the LS. Finally, we show using transsynaptic tracing that LS neurons receiving CA3 and CA1 excitatory input send projections to the hypothalamus and medial septum, regions that are not targeted directly by principal cells of the dorsal hippocampus. Together, our findings demonstrate that the LS accurately and robustly represents spatial, directional as well as self-motion information and is uniquely positioned to relay this information from the hippocampus to its downstream regions, thus occupying a key position within a distributed spatial memory network.


Assuntos
Neurônios GABAérgicos/fisiologia , Septo do Cérebro/citologia , Memória Espacial/fisiologia , Animais , Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Feminino , Masculino , Camundongos
13.
Neuropharmacology ; 191: 108589, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33933476

RESUMO

The medial septum/diagonal band of Broca (MS/DBB) receives direct GABAergic input from the hippocampus via hippocamposeptal (HS) projection neurons as part of a reciprocal loop that mediates cognition and is altered in Alzheimer's disease. Cholinergic and GABAergic interactions occur throughout the MS/DBB, but it is not known how HS GABA release is impacted by these circuits. Most HS neurons contain somatostatin (SST), so to evoke HS GABA release we expressed Cre-dependent mCherry/channelrhodopisin-2 (ChR2) in the hippocampi of SST-IRES-Cre mice and then used optogenetics to stimulate HS fibers while performing whole-cell patch clamp recordings from MS/DBB neurons in acute slices. We found that the acetylcholine receptor (AChR) agonist carbachol and the GABAB receptor (GABABR) agonist baclofen significantly decreased HS GABA release in the MS/DBB. Carbachol's effects were blocked by eliminating local GABAergic activity or inhibiting GABABRs, indicating that it was indirectly decreasing HS GABA release by increasing GABAergic tone. There was no effect of acute exposure to amyloid-ß on HS GABA release. Repetitive stimulation of HS fibers increased spontaneous GABA release in the MS/DBB, revealing that HS projections can modulate local GABAergic tone. These results show that HS GABA release has far-reaching impacts on overall levels of inhibition in the MS/DBB and is under regulatory control by cholinergic and GABAergic activity. This bidirectional modulation of GABA release from local and HS projections in the MS/DBB will likely have profound impact not only on activity within the MS/DBB, but also on output to the hippocampus and hippocampal-dependent learning and memory.


Assuntos
Feixe Diagonal de Broca/fisiologia , Hipocampo/fisiologia , Septo do Cérebro/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Baclofeno/farmacologia , Carbacol/farmacologia , Feixe Diagonal de Broca/metabolismo , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Vias Neurais , Optogenética , Receptores de GABA-B/metabolismo , Septo do Cérebro/metabolismo , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo
14.
Nat Commun ; 12(1): 2764, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980852

RESUMO

The hippocampus is diversely interconnected with other brain systems along its axis. Cycles of theta-frequency activity are believed to propagate from the septal to temporal pole, yet it is unclear how this one-way route supports the flexible cognitive capacities of this structure. We leveraged novel thin-film microgrid arrays conformed to the human hippocampal surface to track neural activity two-dimensionally in vivo. All oscillation frequencies identified between 1-15 Hz propagated across the tissue. Moreover, they dynamically shifted between two roughly opposite directions oblique to the long axis. This predominant propagation axis was mirrored across participants, hemispheres, and consciousness states. Directionality was modulated in a participant who performed a behavioral task, and it could be predicted by wave amplitude topography over the hippocampal surface. Our results show that propagation directions may thus represent distinct meso-scale network computations, operating along versatile spatiotemporal processing routes across the hippocampal body.


Assuntos
Hipocampo/fisiologia , Ritmo Teta/fisiologia , Comportamento/fisiologia , Eletrocorticografia , Humanos , Modelos Neurológicos , Septo do Cérebro/fisiologia , Lobo Temporal/fisiologia
15.
World Neurosurg ; 152: e71-e80, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33974983

RESUMO

BACKGROUND: Although the interforniceal approach with the preservation of the fornix is useful during the endoscopic approach for retroforaminal colloid cysts, it carries a significant risk of memory and cognitive difficulties. Because most reports have reported the endoscopic approach to colloid cysts through the foramen with little emphasis on retroforaminal cysts, the aim of this study was to investigate colloid cysts as a special entity with regard to their different characteristics and surgical approaches and outcomes. METHODS: In this retrospective study, 12 patients with third ventricular colloid cysts with retroforaminal extensions were included. All patients underwent endoscopic transseptal interforniceal approach with tumor resection. The surgical technique was briefly described, and preoperative and postoperative data were evaluated. RESULTS: Among the 12 patients included in this study, most of our patients were males. Average diameter of the colloid cyst was relatively large (average 22 mm). Gross total resection was achieved in 10 cases (83.3%). The stable images showed no local recurrence in the long-term follow-up period except in 1 case at the 28-month follow-up period. CONCLUSIONS: Retroforaminal colloid cyst represents a unique entity that requires special attention to its mode of growth. The endoscopic approach for retroforaminal colloid cysts is nearly the same as that for foraminal cysts. It has a lower incidence rate of postoperative memory changes, lower chances of total resection, and lower incidence rate of hard contents. Moreover, sufficient knowledge on morbid anatomy is important to avoid fornix injury.


Assuntos
Cistos Coloides/cirurgia , Fórnice/cirurgia , Neuroendoscopia/métodos , Septo do Cérebro/cirurgia , Adolescente , Adulto , Cistos Coloides/diagnóstico por imagem , Feminino , Seguimentos , Fórnice/diagnóstico por imagem , Humanos , Masculino , Estudos Retrospectivos , Septo do Cérebro/diagnóstico por imagem , Adulto Jovem
16.
Nat Commun ; 12(1): 2811, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990558

RESUMO

The supramammillary region (SuM) is a posterior hypothalamic structure, known to regulate hippocampal theta oscillations and arousal. However, recent studies reported that the stimulation of SuM neurons with neuroactive chemicals, including substances of abuse, is reinforcing. We conducted experiments to elucidate how SuM neurons mediate such effects. Using optogenetics, we found that the excitation of SuM glutamatergic (GLU) neurons was reinforcing in mice; this effect was relayed by their projections to septal GLU neurons. SuM neurons were active during exploration and approach behavior and diminished activity during sucrose consumption. Consistently, inhibition of SuM neurons disrupted approach responses, but not sucrose consumption. Such functions are similar to those of mesolimbic dopamine neurons. Indeed, the stimulation of SuM-to-septum GLU neurons and septum-to-ventral tegmental area (VTA) GLU neurons activated mesolimbic dopamine neurons. We propose that the supramammillo-septo-VTA pathway regulates arousal that reinforces and energizes behavioral interaction with the environment.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Hipotálamo Posterior/citologia , Hipotálamo Posterior/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Comportamento Consumatório/efeitos dos fármacos , Comportamento Consumatório/fisiologia , Dopamina/fisiologia , Feminino , Ácido Glutâmico/fisiologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Neurológicos , Vias Neurais/citologia , Vias Neurais/fisiologia , Optogenética , Ratos , Ratos Wistar , Reforço Psicológico , Septo do Cérebro/citologia , Septo do Cérebro/efeitos dos fármacos , Septo do Cérebro/fisiologia , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/administração & dosagem
17.
Sci Rep ; 11(1): 2117, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483520

RESUMO

Parvalbumin-containing projection neurons of the medial-septum-diagonal band of Broca ([Formula: see text]) are essential for hippocampal rhythms and learning operations yet are poorly understood at cellular and synaptic levels. We combined electrophysiological, optogenetic, and modeling approaches to investigate [Formula: see text] neuronal properties. [Formula: see text] neurons had intrinsic membrane properties distinct from acetylcholine- and somatostatin-containing MS-DBB subtypes. Viral expression of the fast-kinetic channelrhodopsin ChETA-YFP elicited action potentials to brief (1-2 ms) 470 nm light pulses. To investigate [Formula: see text] transmission, light pulses at 5-50 Hz frequencies generated trains of inhibitory postsynaptic currents (IPSCs) in CA1 stratum oriens interneurons. Using a similar approach, optogenetic activation of local hippocampal PV ([Formula: see text]) neurons generated trains of [Formula: see text]-mediated IPSCs in CA1 pyramidal neurons. Both synapse types exhibited short-term depression (STD) of IPSCs. However, relative to [Formula: see text] synapses, [Formula: see text] synapses possessed lower initial release probability, transiently resisted STD at gamma (20-50 Hz) frequencies, and recovered more rapidly from synaptic depression. Experimentally-constrained mathematical synapse models explored mechanistic differences. Relative to the [Formula: see text] model, the [Formula: see text] model exhibited higher sensitivity to calcium accumulation, permitting a faster rate of calcium-dependent recovery from STD. In conclusion, resistance of [Formula: see text] synapses to STD during short gamma bursts enables robust long-range GABAergic transmission from MS-DBB to hippocampus.


Assuntos
Hipocampo/fisiologia , Neurônios/fisiologia , Parvalbuminas/metabolismo , Septo do Cérebro/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Algoritmos , Animais , Cálcio/metabolismo , Hipocampo/citologia , Potenciais da Membrana/fisiologia , Camundongos Transgênicos , Modelos Neurológicos , Neurônios/citologia , Neurônios/metabolismo , Optogenética/métodos , Técnicas de Patch-Clamp , Septo do Cérebro/citologia
18.
CNS Neurosci Ther ; 27(5): 577-586, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33502829

RESUMO

AIMS: Temporal lobe epilepsy (TLE), often associated with cognitive impairment, is one of the most common types of medically refractory epilepsy. Deep brain stimulation (DBS) shows considerable promise for the treatment of TLE. However, the optimal stimulation targets and parameters of DBS to control seizures and related cognitive impairment are still not fully illustrated. METHODS: In the present study, we evaluated the therapeutic potential of DBS in the medial septum (MS) on seizures and cognitive function in mouse acute and chronic epilepsy models. RESULTS: We found that DBS in the MS alleviated the severity of seizure activities in both kainic acid-induced acute seizure model and hippocampal-kindled epilepsy model. DBS showed antiseizure effects with a wide window of effective stimulation frequencies. The antiseizure effects of DBS were mediated by the hippocampal theta rhythm, as atropine, which reversed the DBS-induced augmentation of the hippocampal theta oscillation, abolished the antiseizure effects of DBS. Further, in the kainic acid-induced chronic TLE model, DBS in the MS not only reduced spontaneous seizures, but also improved behavioral performance in novel object recognition. CONCLUSION: DBS in the MS is a promising approach to attenuate TLE probably through entrainment of the hippocampal theta rhythm, which may be therapeutically significant for refractory TLE treatment.


Assuntos
Estimulação Encefálica Profunda/métodos , Epilepsia do Lobo Temporal/terapia , Hipocampo/fisiopatologia , Septo do Cérebro , Ritmo Teta , Animais , Cognição , Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/psicologia , Ácido Caínico , Excitação Neurológica , Aprendizagem , Memória , Camundongos , Camundongos Endogâmicos C57BL , Desempenho Psicomotor , Convulsões/induzido quimicamente , Convulsões/prevenção & controle
19.
Cell Mol Neurobiol ; 41(8): 1787-1799, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32860154

RESUMO

Septal innervation of basal forebrain cholinergic neurons to the hippocampus is critical for normal learning and memory and is severely degenerated in Alzheimer's disease. To understand the molecular events underlying physiological cholinergic synaptogenesis and remodeling, as well as pathological loss, we developed an optimized primary septal-hippocampal co-culture system. Hippocampal and septal tissue were harvested from embryonic Sprague-Dawley rat brain and cultured together at varying densities, cell ratios, and in the presence of different growth factors. We identified conditions that produced robust septal-hippocampal synapse formation. We used confocal microscopy with primary antibodies and fluorescent ligands to validate that this system was capable of generating developmentally mature cholinergic synapses. Such synapses were comprised of physiological synaptic partners and mimicked the molecular composition of in vivo counterparts. This co-culture system will facilitate the study of the formation, plasticity, and dysfunction of central mammalian cholinergic synapses.


Assuntos
Neurônios Colinérgicos/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Septo do Cérebro/citologia , Septo do Cérebro/metabolismo , Sinapses/metabolismo , Animais , Neurônios Colinérgicos/química , Técnicas de Cocultura , Feminino , Hipocampo/química , Gravidez , Ratos , Ratos Sprague-Dawley , Septo do Cérebro/química , Sinapses/química
20.
Sci Rep ; 10(1): 22173, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335150

RESUMO

Autism spectrum disorder (ASD) is a continuum of neurodevelopmental disorders and needs new therapeutic approaches. Recently, oxytocin (OXT) showed potential as the first anti-ASD drug. Many reports have described the efficacy of intranasal OXT therapy to improve the core symptoms of patients with ASD; however, the underlying neurobiological mechanism remains unknown. The OXT/oxytocin receptor (OXTR) system, through the lateral septum (LS), contributes to social behavior, which is disrupted in ASD. Therefore, we selectively express hM3Dq in OXTR-expressing (OXTR+) neurons in the LS to investigate this effect in ASD mouse models developed by environmental and genetic cues. In mice that received valproic acid (environmental cue), we demonstrated successful recovery of impaired social memory with three-chamber test after OXTR+ neuron activation in the LS. Application of a similar strategy to Nl3R451C knock-in mice (genetic cue) also caused successful recovery of impaired social memory in single field test. OXTR+ neurons in the LS, which are activated by social stimuli, are projected to the CA1 region of the hippocampus. This study identified a candidate mechanism for improving core symptoms of ASD by artificial activation of DREADDs, as a simulation of OXT administration to activate OXTR+ neurons in the LS.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/psicologia , Expressão Gênica , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores de Ocitocina/genética , Septo do Cérebro/metabolismo , Comportamento Social , Animais , Ansiedade , Transtorno do Espectro Autista/tratamento farmacológico , Comportamento Animal , Modelos Animais de Doenças , Imunofluorescência , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Células Piramidais/metabolismo , Receptores de Ocitocina/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...